Showing posts with label Robot. Show all posts
Showing posts with label Robot. Show all posts

Monday, April 23, 2012

All in a day’s work: Design and print your own robot



Full Article:
http://web.mit.edu/newsoffice/2012/print-your-own-robots-0403.html

MIT is leading an ambitious new project to reinvent how robots are designed and produced. Funded by a $10 million grant from the National Science Foundation (NSF), the project will aim to develop a desktop technology that would make it possible for the average person to design, customize and print a specialized robot in a matter of hours.

“This research envisions a whole new way of thinking about the design and manufacturing of robots, and could have a profound impact on society,” says MIT Professor Daniela Rus, leader of the project and a principal investigator at the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL). “We believe that it has the potential to transform manufacturing and to democratize access to robots.”

“Our goal is to develop technology that enables anyone to manufacture their own customized robot. This is truly a game changer,” says Professor Vijay Kumar, who is leading the team from the University of Pennsylvania. “It could allow for the rapid design and manufacture of customized goods, and change the way we teach science and technology in high schools.”

The five-year project, called “An Expedition in Computing for Compiling Printable Programmable Machines,” brings together a team of researchers from MIT, the University of Pennsylvania and Harvard University, and is funded as part of the NSF’s “Expeditions in Computing” program.

It currently takes years to produce, program and design a functioning robot, and is an extremely expensive process, involving hardware and software design, machine learning and vision, and advanced programming techniques. The new project would automate the process of producing functional 3-D devices and allow individuals to design and build functional robots from materials as easily accessible as a sheet of paper.

“Our vision is to develop an end-to-end process; specifically, a compiler for building physical machines that starts with a high level of specification of function, and delivers a programmable machine for that function using simple printing processes,” Rus says.

Researchers hope to create a platform that would allow an individual to identify a household problem that needs assistance; then head to a local printing store to select a blueprint, from a library of robotic designs; and then customize an easy-to-use robotic device that could solve the problem. Within 24 hours, the robot would be printed, assembled, fully programmed and ready for action...


Saturday, November 5, 2011

Winged Robot Is Time Machine to Origins of Flight


John Bohannon, ScienceNOW
October 18, 2011
http://www.wired.com/wiredscience/2011/10/robots-flying-origins/

Here’s what we know about the evolution of flight: By about 150 million years ago, the forests were filled with flying — or perhaps just gliding — dinosaurs like Archaeopteryx, possibly similar to the ancestor of modern birds. What we don’t know is what primitive wings were used for before bird ancestors could fly. A study published today in the journal Bioinspiration & Biomimetics provides some fresh data for this debate, not from fossils but a winged robot.

There are two main theories for how avian flight evolved. According to the “trees-down” theory, primitive wings were used to glide down from heights. The “ground-up” theory holds that bird ancestors used their wings to “run flap” along the ground, making them faster and better able to scamper up steep inclines that got in their way. The problem with the ground-up theory is the huge speed required to achieve liftoff. By comparison, incremental improvements in gliding could have led to flight. The fossil evidence has been too scant to settle the matter.

Ronald Fearing and Kevin Peterson, engineers at the University of California, Berkeley, were not thinking about this debate when they created a 25-gram robot called DASH+Wings. It was a modification to a tiny six-legged robot called DASH, for Dynamic Autonomous Sprawled Hexapod — one of the many robots they have developed as sneaky reconnaissance for the U.S. military and other applications. Tiny ground-based robots often have difficulty getting up inclines and over objects, Fearing says, so “we had been working on exploring a hybrid locomotion mode, where flapping wings and legs combine to propel the robot.” Once they had added wings to DASH, they realized that it might be a useful tool for settling evolutionary questions. So they teamed up with Robert Dudley, a paleobiologist also at Berkeley.

The team ran DASH+Wings through a series of mini-Olympic events. The bot ran as fast as possible across the floor. It tried to clamber up increasingly steep ramps. And it also jumped from a platform to glide as far as possible from the base. For each of these events, the team compared the bot’s performance both with and without wings, and with its wings flapping or still, all while measuring performance with accelerometers and cameras.

Having a pair of flapping wings helped with every test, but especially for gliding. Flapping wings did allow the bot to climb up steeper inclines, and it increased its running speed, but only by 90 percent, far from the 400 percent theoretically necessary for flight. In the gliding test, flapping wings allowed the bot to sail even farther from the base than it did with the wings fixed. “This result lends indirect support to the theory that avian flight evolved from tree-dwelling animals and not from land animals that required ground-based running takeoffs,” Peterson says.

“This study is a beautiful example of how relatively simple bioinspired robots can address [questions] that are difficult or impossible to test in living organisms,” says Brandon Jackson, an evolutionary biologist at the University of Montana, Missoula. The results support the gliding model, but it’s still possible that ground-based bird ancestors ran fast enough to take off, Jackson says. “The question of avian flight origins is far from answered.”